Error Detection and Correction

By

Dr M. Senthilkumar
Assistant Professor
Department of Computer Science
Government Arts and Science College, Avinashi - 641654

Error Correction

Redundancy
(r) bits

Total $m+r$ bits

Error Correction - Hamming Code

\checkmark Consider 8 bit Data Word - 11000100
\checkmark Bit Position: $\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

$$
\begin{array}{llllllllll}
\text { P1 P2 } 1 & \text { P4 } & 1 & 0 & 0 & P 8 & 0 & 1 & 0 & 0
\end{array}
$$

\checkmark The bits positions that are expressed in power of 2 are considered as Parity Bits

Error Correction - Hamming Code

$$
\begin{aligned}
& \checkmark 1=2^{0} \\
& \checkmark 2=2^{1} \\
& \checkmark 3=2^{0}+2^{1} \\
& \checkmark 4=2^{2} \\
& \checkmark 5=2^{2}+2^{0} \\
& \checkmark 6=2^{2}+2^{1} \\
& \checkmark 7=2^{2}+2^{1}+2^{0} \\
& \checkmark 8=2^{3} \\
& \checkmark 9=2^{3}+2^{0} \\
& \checkmark 10=2^{3}+2^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \checkmark 11=2^{3}+2^{1}+2^{0} \\
& \checkmark 12=2^{3}+2^{2}
\end{aligned}
$$

$$
\checkmark \text { P1 = XOR }(3,5,7,9,11)
$$

$$
\checkmark P 2=X O R(3,6,7,10,11)
$$

$$
\checkmark \mathrm{P} 4=\operatorname{XOR}(5,6,7,12)
$$

$$
\checkmark \text { P8 }=\text { XOR }(9,10,11,12)
$$

Error Correction - Hamming Code

\checkmark Consider 8 bit Data Word - 11000100
\checkmark Bit Position: $1 \begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

$$
\begin{array}{llllllllll}
\text { P1 P2 } 1 & \text { P4 } & 1 & 0 & 0 & P 8 & 0 & 1 & 0 & 0
\end{array}
$$

$$
\mathrm{P} 1=\mathrm{XOR}(3,5,7,9,11)=1+1+0+0+0=0
$$

$$
\mathrm{P} 2=\operatorname{XOR}(3,6,7,10,11)=1+0+0+1+0=0
$$

$$
P 4=\operatorname{XOR}(5,6,7,12)=1+0+0+0=1
$$

$$
\operatorname{P8}=\operatorname{XOR}(9,10,11,12)=0+1+0+0=1
$$

Error Correction - Hamming Code

\checkmark Consider 8 bit Data Word - 11000100
\checkmark Bit Position: $1 \begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

$$
\begin{array}{llllllllllll}
0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}
$$

$$
\begin{aligned}
& \mathrm{P} 1=\mathrm{XOR}(3,5,7,9,11)=0 \\
& \mathrm{P} 2=\mathrm{XOR}(3,6,7,10,11)=0 \\
& \mathrm{P} 4=\operatorname{XOR}(5,6,7,12)=1 \\
& \mathrm{P} 8=\operatorname{XOR}(9,10,11,12)=1
\end{aligned}
$$

Error Correction - Hamming Code

\checkmark Bit Position: $1 \begin{array}{llllllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

Transmitted:	0	0	1	1	1	0	0	1	0	1	0	0
Received:	1	0	1	1	1	0	0	1	0	1	0	0

$$
\begin{aligned}
& \mathrm{C} 1=\operatorname{XOR}(1,3,5,7,9,11)=\text { Wrong } 1+\mathrm{P} 1=1+0=1 \\
& \mathrm{C} 2=\operatorname{XOR}(2,3,6,7,10,11)=0+\mathrm{P} 2=0+0=0 \\
& \mathrm{C} 4=\operatorname{XOR}(4,5,6,7,12)=1+\mathrm{P} 4=1+1=0 \\
& \mathrm{C} 8=\operatorname{XOR}(8,9,10,11,12)=1+\mathrm{P} 8=1+1=0
\end{aligned}
$$

Error in Bit 1

Error Correction - Hamming Code

\checkmark Bit Position: $1 \begin{array}{llllllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

Transmitted:	0	0	1	1	1	0	0	1	0	1	0	0
Received:	0	0	1	1	0	0	0	1	0	1	0	0

$$
\begin{aligned}
& \mathrm{C} 1=\mathrm{XOR}(1,3,5,7,9,11)=0+\text { Wrong } \mathrm{P} 1=1+0=1 \\
& \mathrm{C} 2=\operatorname{XOR}(2,3,6,7,10,11)=0+\mathrm{P} 2=0+0=0 \\
& \mathrm{C} 4=\operatorname{XOR}(4,5,6,7,12)=1+\text { Wrong P4 } 4=1+0=1 \\
& \mathrm{C} 8=\operatorname{XOR}(8,9,10,11,12)=1+\mathrm{P} 8=1+1=0
\end{aligned}
$$

Error in Bit 5

Error Correction - Hamming Code

If $C=0$ and $P=0, \quad$ No Error
If $C \neq 0$ and $P=1, \quad$ Single Bit Error, Can be Corrected
If $C \neq 0$ and $P=0$, Double Bit Error, Can be Detected, Can not be Corrected
If $C=0$ and $P \neq 0, \quad P 13$ Bit Error

References

\checkmark Book: Data communication and Networking Fourth edition By : BEHROUZ A FOROUZAN
\checkmark various relevant websites

Thank You

